

Valorisation of plastic waste in Algeria Techno-economic project

ADVISOR: Prof. Naceur BELGACEM *PRESENTED BY:* Rima HAMEL Carmen MURCIA *Master Biorefinery & Biomaterials*

The global surge in waste generation demands innovative solutions to mitigate environmental impact and harness untapped energy resources

GAS

REDUCE THE USE OF PLASTIC OR OTHER WASTE.

BY HARNESSING PYROLYSIS FOR THIS PURPOSE, WE CONTRIBUTE TO A GREENER, MORE EFFICIENT PARADIGM FOR WASTE PROCESSING AND RESOURCE CONSERVATION.

PYROLYSIS PROCESS PYROLYSIS, A THERMOCHEMICAL CONVERSION PROCESS, PRESENTS A PROMISING AVENUE FOR THE TRANSFORMATION OF ORGANIC WASTE MATERIALS INTO VALUABLE LIQUID FUELS

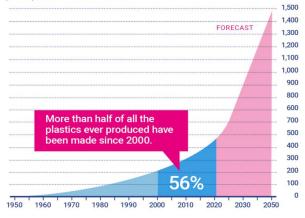
TURN ORGANIC WASTE INTO OIL.

<u>-е</u>Д

OUR TEAM

Hamel Rima

You can enter a subtitle here if you need it



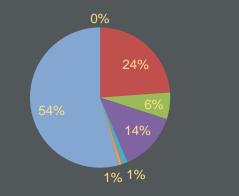
Introduction

PRODUCTION OF PLASTIC

Global annual plastic production in million tonnes.

-6-

SOURCE: PLASTIC ATLAS, ASIA EDITION, 2021 | © PLASTIC SOUP FOUNDATION

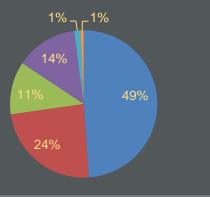


┓╺

Income of plastics

Algeria	plastic feed	l stock	income to the process (%)	income to the process (t/d)
	over 15% Lit. values	over 100% calc	LDPE assumption	mass tones/day
PLASTIC SAC	8,14	54,34	0	0
LDPE	0	0,00	48,91	4,891
PET	3,57	23,83	23,83	2,383
HDPE	0,92	6,14	11,58	1,158
PP	2,04	13,62	13,62	1,362
PS	0,21	1,40	1,40	0,140
PVC	0,1	0,67	0,67	0,067
total	14,98	100,0	100	10

1. algeria plastic feed stock

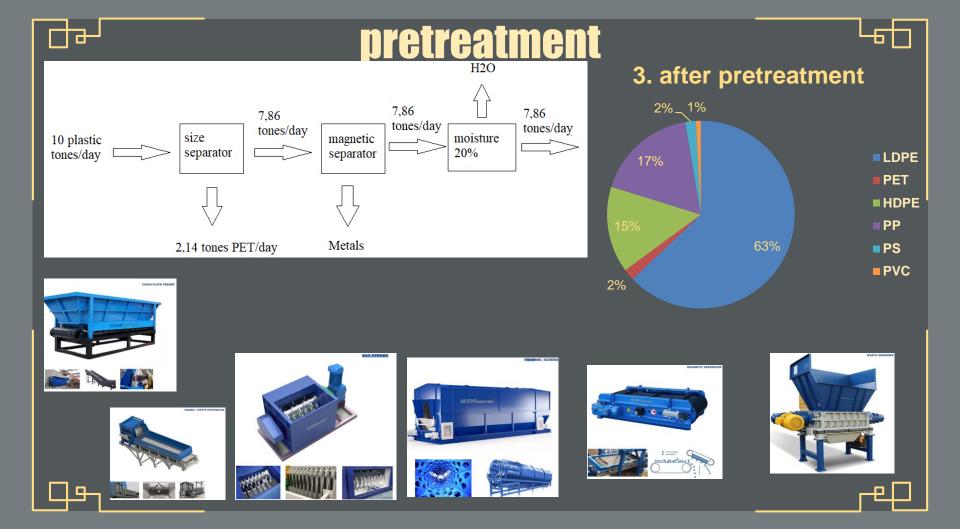

PETHDPEPPPS

■ LDPE

-6†

PVCpastic sac

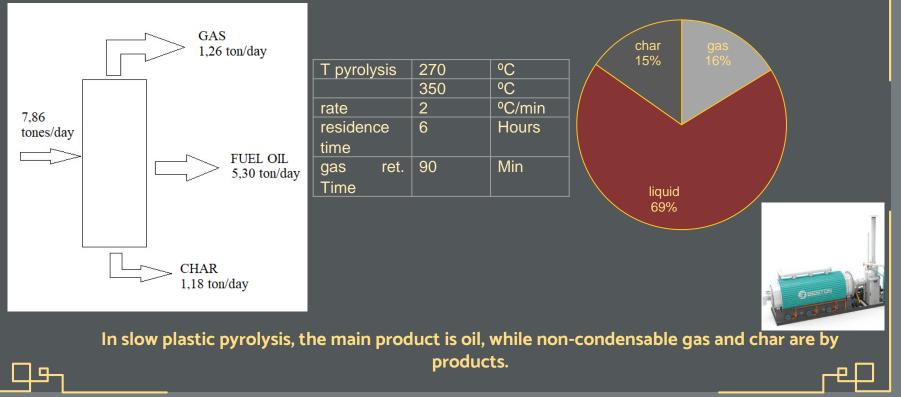
2. Income to pretreatment



PETHDPEPPPS

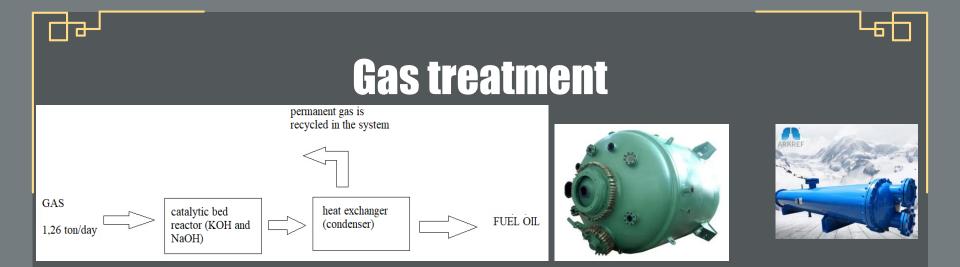
■ PVC

LDPE



Pyrolysis tower

Outside pyrolysis

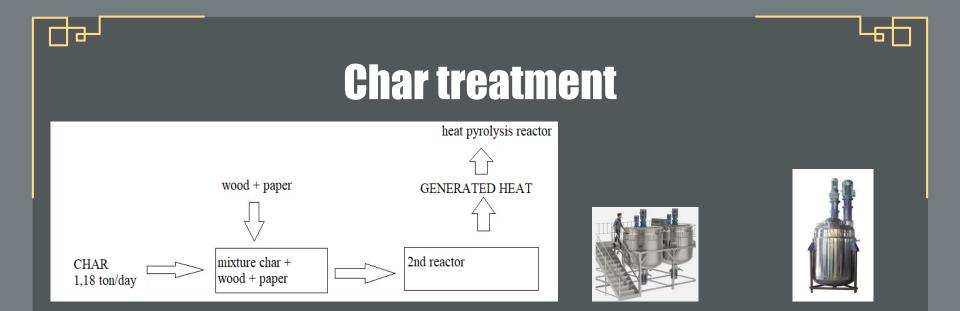

Characteristics of Fuel Oil obtained <

귬

Lower heating value	46.5	MJ/kg FO				
Density 20 °C	0.786 – 0.847	g/cm³				
Viscosity 50°C	2.318	mm²/s cst				
Viscosity 100°C	1.085	mm²/s cst				
Sulphur content	1.785	mg/kg FO				
a: Company, BEINTEC Inovações Tecnológicas, based in RS/Brazil,						
personal communication, 2020.						

The FO obtained through the thermochemical conversion of PSW in the BEINTEC technology has a lower heating value (LHV) of 46.5 MJ/kg.

This value is higher than market fuels such as diesel oil and gasoline that have LHV of 42 MJ/Kg and 43 MJ/kg, respectively.

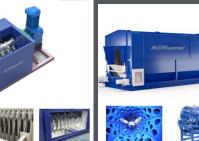


In the pyrolysis process, the gas generated will pass through a catalytic bed (KOH and NaOH) for the treatment of de-nitrogenization, de-chlorination, and desulphurization.

The fusion of these materials occurs between the temperatures of 350°C to 400°C

The char \rightarrow is mixed with woody biomass and wastepaper, the blend produced is used in co-gasification in a second reactor to generate the heat required required by the pyrolysis reactor.

to ensure that the process is thermally self-sustaining.



Total BESTON equipment pretratment and pyrolysys: 89000\$

-6-

Mixer (5000L) = 3500\$

4

Thermal reactor (3000L)= 10000 \$

Condenser (200L) = 1800*5 <u>= 9000 \$</u>

Catalytic bed reactor (200L)= 1650*5=8250\$

Economical part

You can enter a subtitle here if you need it

귬

-6-

Project Scope Definition

- The plant is scaled to handle an input of 10 tons of plastic waste per day.
- This scale was chosen based on factors such as the availability of plastic waste, market demand for pyrolysis products, and available resources..

•

┍┓╸		ltem	Details	unit	CA unit price	PEX quantity	amount	total amount	-60
			BLJ-16 (beston)	Set	89000	1	89000		
f i x		Equipment	Char treatment	Set	13500	1	13500		
е			gas treatment	Set	17250	1	17250		
d		Transportatio	Seafreight	Set	64600	1	64600		
i		n	from port to site	Set	3000	1	3000		<u>^</u>
n		custom tax	15%	Set	13350	1	13350		SZ2
V			Tech Salary	Day	50	50	2500		×
e			round trip	Ea	3000	2	6000		
S 4			Visa	Ea	750	1	750		
t		installation	Local welder	Day	30	100	3000		
m e			Local plumber	Day	30	20	600		
n			local labor	Day	23	50	1150		259100\$
t			crane forklift	Day	130	30	3900		200100ψ
с		Materials	installation material	Set	4000	1	4000		
0		License		Ea	1500	1	1500		
S		Workshop	500	m²	70	500	35000		
	1							259100\$	

╘┻	Raw	Waste					
	materials	plastic	Ton	180	10	1800	
	water		m3	0,3	3	0,9	
	Electricity		KW/H	0,035	864	30,24	
cost		Natural					
ပ ဂ	Fuel	gas	Liter	0,004	240	0,96	
tin	Labor		People	20	4	80	
ŝraj	maintenance		Day	85	1	85	
operating	Depreciation					107,9583	
Ŭ	(8 years)	8	Day	108	1	333	

┍┫┲┙		Reve	nue est i	imation			
	Pyrolysis oil	KG	5,8	530	3074		
End product	char	kg	3	118	354		
product	Gas		0	126	0		
						3428\$	
Taxes	17%						
Daily income	worki day				10	98,04\$	
						\$	
└┼┺┐							₽₽₽

┎┨┲╴

The selling price of pyrolysis oil is assumed to increase by 4% each year. technician salaries are considered to rise by 1.3% annually with a discount rate of 10%.

(NPV) indicates that the plastic waste pyrolysis project in Algeria is has the potential to generate significant returns.

IRR at 136% is high. This signifies that the project is expected to yield substantial returns on the initial investment.

Payback period:

The cumulative cash flow for the first year surpassing the initial investment implies a quick payback period.

2027096,5\$

Net Present Value

136%

The Internal Rate of Return

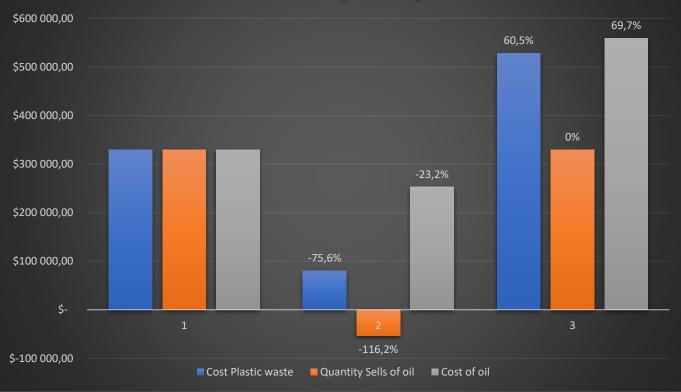
236 days

Payback Period

3-1	assumptions	Impact Level	
	Supply of Plastic Waste	Very High	
	Market Demand for End Products	Moderate to Low	
Analysis	Raw Material Price Variability	Low	n
Risk	Regulatory Risks	Low to moderate	
	Technological Risks	Moderate to Low	
	Geopolitical Risks	Very High	

Co

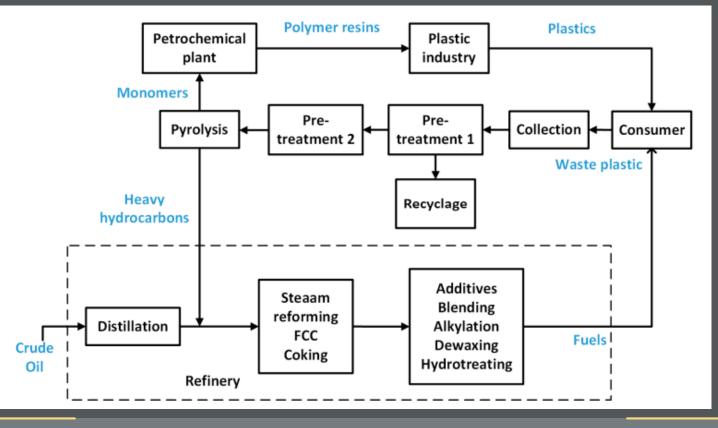
assumptions	Impact Level	Risk	Mitigation	-6	
Supply of Plastic Waste	Very High	Low	Diversified supply sources, long-term contracts, and continuous monitoring of recycling trends can help mitigate the impact.		
Market Demand for End Products	Moderate to Low	High	Regular market analysis, exploration of new applications, and strategic partnerships can help manage the impact of fluctuating market demand.		
aw Material Price Variability	Low	moderate	Utilizing forward contracts, diversifying sources, and ongoing analysis of international markets can help mitigate the impact of price variability.		
Regulatory Risks	Low to moderate	Low	A dedicated team to monitor regulatory changes, proactive engagement with authorities, and adherence to environmental best practices can help manage regulatory risks.		
Technological Risks	Moderate to Low	Low	Selecting proven technologies, rigorous preventive maintenance programs, and continuous staff training can help mitigate potential technological risks.		
eopolitical Risks	Very High to high	high	Very High to Low Continuous monitoring of political and economic developments, diversification of energy and raw material sources, and proactive engagement with local authorities can help manage geopolitical risks.		
Financial Risks	Very High	Low	Establishing contingency budgets, using financial instruments to hedge against exchange risks, and regular review of financial performance can help mitigate potential financial risks.		
ommercialization Risks	Moderate to Low	moderate	Developing a robust marketing strategy, identifying potential buyers in advance, and establishing long-term sales contracts can help manage commercialization risks.		



 $\Box \varphi$

Sensitivity analysis

Comparison between crude and pyrolysis oil price's


This \$35 price difference positions our product as a cost-effective and sustainable option for potential customers.
Current market trends indicate an increasing demand for pollution solutions, aligning with the sustainability aspect of our pyrolysis oil.

Proposing Pyrolysis Integration for Plastic Waste Management in Sonatrach's Oil Refinery

╼┼╴

conclusion

- reduced petroleum use up to 40%, energy conservation, CO2 emission, resulting in less emission of landfill gases and reduced environmental damage.
- While there are challenges and limitations to the current tools and methods used for recovering plastic waste, such as the difficulty in recycling all types of plastic using current technology, pyrolysis technology still offers a promising solution for plastic waste management and environmental sustainability.

