LIFE CYCLE ASSESSMENT OF FACE SETTING POWDER

FADZAI S.S. MUNDEMBE CARME MURCIA

TABLE OF CONTENTS

- Introduction
- Assumptions
- Life Cycle Inventory
- Impact Assessment
- Conclusion

INTRODUCTION

Use: set makeup, reduce shine, provide a smooth, matte finish to the skin, enhancing the longevity and overall appearance of makeup.

Global Market Size

Forecast Period	2023-2029
Market Size (2023)	USD 12.7 Billion
CAGR	5.9%
Largest Market	North America

FREQUENCY OF USE

ASSUMPTIONS

Literature Ingredients	%
Talc	77
Zn-stearate	5
ZnO	2
Kaolin	5
Mica	10
Red Iron Oxide	0,36
Yellow Iron Oxide	0,36
Black Iron Oxide	0,03
Perfume	0,25

Actual Ingredients used	%
Kaolin	82
ZnO	2
Glycerin	0.5
Preservative (benzyl alcohol)	0.0375
Maize Starch	5.625
Rape Seed Oil	5

LIFE CYCLE STAGES

GLOBAL COMPARISON

- Fresh water ecotoxicity
- Climate change (kg CO2 / kg powder)
- Human toxicity non cancer effect

GLOBAL COMPARISON

UNMODIFIED TREE DIAGRAM RAW MATERIALS

IMPROVEMENTS

- I^{st} scenario \rightarrow without improvements
- 2^{nd} scenario \rightarrow rape seed oil changed for organic oil
- 3^{rd} scenario \rightarrow kaolin transportation changed
- 4t scenario \rightarrow both changes

2nd scenario kg of CO2 changes from 59.9% to 48% on rape seed oil change; from 0,172 kg CO2/kg face powder to 0,107kg CO2/kg face powder

Kaolin changed from 61% to 79% on CO2 contribution but the kg CO2 emission remained the same

IMPROVEMENTS

Comparison for kg CO2 /kg powder 4 scenarios

-0,1

OTHER COMPARISONS WITH BOTH MODIFICATIONS

CONCLUSION

- We can see good improvement in CO2 emission in scenario 2, 3 and 4
- On the other hand, there are other parameters that wont improve with the modifications (land use, water resource depletion and HH irradiation)
- As shown in the beginning, some impact come from the waste, then the bigger one comes from the cotton used to remove the face powder. The packaging has more influence over the raw materials extraction.
- Packaging improvements: recycling the PET bottle or the company decides to use recycled PET for packaging their face powder.
 - Or PLA instead of PET (+ warning not to put in the sun in a label) or PHB (drawback: most expensive so the product will become more expensive)
- Cotton to remove face powder can't be changed because it depends on user preference.
- There is no perfect scenario even after doing the modifications.

REFERENCES

- Michela Secchi, Valentina Castellani, Elena Collina, Nadia Mirabella, Serenella Sala, Assessing eco-innovations in green chemistry: Life Cycle Assessment (LCA) of a cosmetic product with a bio-based ingredient, Journal of Cleaner Production, Volume 129, 2016, Pages 269-281, ISSN 0959-6526,.
- Rocca, R., Acerbi, F., Fumagalli, L. et al. Development of an LCA-based tool to assess the environmental sustainability level of cosmetics products. Int J Life Cycle Assess 28, 1261–1285 (2023).
- Carter, M. (1998). Facials: the aesthetics of cosmetics and makeup. Literature & Aesthetics, 8.
- Balsam, M. S., & Sagarin, E. (Eds.). (1972). Cosmetics science and technology (Vol. 1). John Wiley & Sons.
- Downing, J. G. (1934). Cosmetics—past and present. Journal of the American Medical Association, 102(25), 2088-2091.
- Wall, F. E. (1942). Cosmetics. Journal of Chemical Education, 19(9), 435.
- Steiling, W., Almeida, J. F., Vandecasteele, H. A., Gilpin, S., Kawamoto, T., O'Keeffe, L., ... & Bowden, A. M. (2018). Principles for the safety evaluation of cosmetic powders. *Toxicology letters*, 297, 8-18.
- Andréo-Filho, N., Benson, H. A., Leite-Silva, V. R., & Leonardi, G. R. (2019). Powders in Cosmetic Formulations. Cosmetic Formulation: Principles and Practice,

- 209.
- Shivsharan, U. S., Raut, E. S., & Shaikh, Z. M. (2014). Packaging of cosmetics: A review. Journal of pharmaceutical and scientific innovation, 3(4), 286-293.
- Bushby, R. (2017). Cosmetics and how to Make Them. Read Books Ltd.
- REDGROVE, H. S. (1930). SCIENCE AND COSMETICS. Science Progress in the Twentieth Century (1919-1933), 24(95), 470-479.
- Hunt, K. A., Fate, J., & Dodds, B. (2011). Cultural and social influences on the perception of beauty: A case analysis of the cosmetics industry. *Journal of business* case studies (JBCS), 7(1).
- Singh, S. K. (2010). Handbook on Cosmetics (Processes, Formulae with Testing Methods). Asia Pacific Business Press Inc.
- Farber, L. A. W. R. E. N. C. E. (1972). Face powders. Cosmetics-Science and Technology, Vol. _1, Balsam, MS and Sagarin, E., eds., Wiley-Interscience, New York, 338-339.